Skip to contents

This function generates background noise data with specified parameters such as the number of samples, number of dimensions, mean, and standard deviation.

Usage

gen_bkg_noise(n, num_dims, mean, sd)

Arguments

n

Number of samples to generate.

num_dims

Number of dimensions (columns) of the data.

mean

Mean of the normal distribution used to generate noise (default is 0).

sd

Standard deviation of the normal distribution used to generate noise (default is 1).

Value

A matrix containing the generated background noise data, with n rows and num_dims columns.

Examples


# Generate background noise with custom mean and standard deviation
set.seed(20240412)
gen_bkg_noise(n = 50, num_dims = 3, mean = 5, sd = 2)
#>            [,1]      [,2]      [,3]
#>  [1,]  7.635531 10.037518  1.292495
#>  [2,]  3.715683  5.483040  7.456922
#>  [3,]  2.415887  7.175448  5.392385
#>  [4,]  7.569624  3.788400  4.513048
#>  [5,]  5.755002  7.298743 10.601484
#>  [6,]  4.691712  4.376551  2.787309
#>  [7,]  1.935748  5.351451  6.788723
#>  [8,]  5.781366  2.118594  6.608606
#>  [9,]  4.071065  2.998375  4.881167
#> [10,] 10.958479  4.780378  5.959907
#> [11,]  5.724177  5.462357  2.943693
#> [12,]  4.956438  6.080202  6.750636
#> [13,]  5.507636  5.374392  2.562168
#> [14,]  4.855293  4.282226  5.279027
#> [15,]  3.980759  2.482610  3.342656
#> [16,]  5.760223  6.003400  5.325136
#> [17,]  4.376727  8.140154  6.354585
#> [18,]  5.681875  6.139086  7.107791
#> [19,]  5.815919  6.616105  7.024455
#> [20,]  6.960276  6.320212  8.371258
#> [21,]  7.675015  4.006200  4.887007
#> [22,]  3.005959  4.303653  2.737309
#> [23,]  4.697547  6.658578  4.123089
#> [24,]  2.344723  5.581362  8.613646
#> [25,]  5.695303  7.340288  5.139200
#> [26,]  5.744492  2.461405  4.926796
#> [27,]  5.220763  5.547385  5.350338
#> [28,]  5.271393  5.160677  7.293827
#> [29,]  3.242984  7.635102  2.667537
#> [30,]  7.509159  5.929393  4.273409
#> [31,]  4.608606  6.609514  1.566371
#> [32,]  3.209056  2.180772  6.178835
#> [33,]  5.725237  5.165021  4.623872
#> [34,]  6.335796  5.656328  7.121541
#> [35,]  5.541793  5.284546  3.879901
#> [36,]  4.150795  3.361770  9.522660
#> [37,]  4.566437  3.853464  8.282124
#> [38,]  7.000616  4.294237  4.797790
#> [39,]  6.093445  8.901827  6.905468
#> [40,]  3.246655  8.315616  7.166919
#> [41,]  3.738327  3.308575  2.781573
#> [42,]  2.500154  3.215103  2.874195
#> [43,]  8.812362  7.008436  3.795285
#> [44,]  7.534683  4.155437  5.174475
#> [45,]  2.466038  3.223680  3.174031
#> [46,]  6.614562  3.962873 -0.761985
#> [47,]  4.644544  4.439052  4.704260
#> [48,]  7.197077  2.669747  3.499666
#> [49,]  5.659864  3.934118  4.061197
#> [50,]  6.411732  7.543840  8.805822