Here, we’ll walk through the process of preprocessing 2-D embedding data to obtain regular hexagons.
First, you’ll need 2-D embedding data generated for your
high-dimensional data. For our example, we’ll use a
S-curve dataset with four additional noise dimensions
(scurve
). We’ve used UMAP as our non-linear dimension
reduction method (NLDR) to generate embeddings for the
scurve
data.
scaled_umap <- gen_scaled_data(nldr_data = scurve_umap)
glimpse(scaled_umap)
#> List of 3
#> $ scaled_nldr: tibble [1,000 × 3] (S3: tbl_df/tbl/data.frame)
#> ..$ emb1: num [1:1000] 0.277 0.697 0.779 0.173 0.218 ...
#> ..$ emb2: num [1:1000] 0.913 0.538 0.399 0.953 0.983 ...
#> ..$ ID : int [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
#> $ lim1 : num [1:2] -9.15 8.55
#> $ lim2 : num [1:2] -10.4 10.1
The function gen_scaled_data()
standardises the 2-D
embedding and rescales it so that hexagons generated during
visualisation or analysis will be regular.