
Package index
-
s_curve_noise
- S-curve dataset with noise dimensions
-
s_curve_noise_training
- S-curve dataset with noise dimensions for training
-
s_curve_noise_test
- S-curve dataset with noise dimensions for test
-
s_curve_noise_umap
- UMAP embedding for S-curve dataset which with noise dimensions
-
s_curve_noise_umap_scaled
- Scaled UMAP embedding for S-curve dataset which with noise dimensions
-
s_curve_noise_umap_predict
- Predicted UMAP embedding for S-curve dataset which with noise dimensions
-
s_curve_noise_umap2
- UMAP embedding for S-curve dataset which with noise dimensions
-
s_curve_noise_umap3
- UMAP embedding for S-curve dataset which with noise dimensions
-
s_curve_noise_umap4
- UMAP embedding for S-curve dataset which with noise dimensions
-
s_curve_noise_umap5
- UMAP embedding for S-curve dataset which with noise dimensions
-
s_curve_noise_umap6
- UMAP embedding for S-curve dataset which with noise dimensions
-
s_curve_obj
- Object for S-curve dataset
-
gen_scaled_data()
- Scaling the NLDR data
-
calc_bins_y()
- Calculate the effective number of bins along x-axis and y-axis
-
gen_centroids()
- Generate centroid coordinate
-
gen_hex_coord()
- Generate hexagonal polygon coordinates
-
assign_data()
- Assign data to hexagons
-
compute_std_counts()
- Compute standardize counts in hexagons
-
hex_binning()
- Hexagonal binning
-
extract_hexbin_centroids()
- Extract hexagonal bin centroids coordinates and the corresponding standardise counts.
-
extract_hexbin_mean()
- Extract hexagonal bin mean coordinates and the corresponding standardize counts.
-
tri_bin_centroids()
- Triangulate bin centroids
-
gen_edges()
- Generate edge information
-
compute_mean_density_hex()
- Compute mean density of hexagonal bins
-
find_low_dens_hex()
- Find low-density Hexagons
-
avg_highd_data()
- Create a dataframe with averaged high-dimensional data
-
fit_highd_model()
- Construct the 2D model and lift into high-D
-
glance()
- Generate evaluation metrics
-
predict_emb()
- Predict 2D embeddings
-
augment()
- Augment Data with Predictions and Error Metrics
-
GeomHexgrid
- GeomHexgrid: A Custom ggplot2 Geom for Hexagonal Grid
-
stat_hexgrid()
- stat_hexgrid Custom Stat for hexagonal grid plot
-
geom_hexgrid()
- Create a hexgrid plot
-
GeomTrimesh
- GeomTrimesh: A Custom ggplot2 Geom for Triangular Meshes
-
stat_trimesh()
- stat_trimesh Custom Stat for trimesh plot
-
geom_trimesh()
- Create a trimesh plot
-
vis_rmlg_mesh()
- Visualize triangular mesh after removing the long edges
-
comb_data_model()
- Create a dataframe with averaged high-dimensional data and high-dimensional data
-
show_langevitour()
- Visualize the model overlaid on high-dimensional data
-
gen_axes()
- Generate Axes for Projection
-
get_projection()
- Compute Projection for High-Dimensional Data
-
plot_proj()
- Plot Projected Data with Axes and Circles
-
comb_all_data_model()
- Create a dataframe with averaged high-dimensional data and high-dimensional data, non-linear dimension reduction data
-
show_link_plots()
- Visualize the model overlaid on high-dimensional data along with 2D wireframe model.
-
comb_all_data_model_error()
- Create a dataframe with averaged high-dimensional data and high-dimensional data, non-linear dimension reduction data, model error data
-
show_error_link_plots()
- Visualize the model overlaid on high-dimensional data along with 2D wireframe model and error.
-
find_pts()
- Find points in hexagonal bins
-
find_non_empty_bins()
- Find the number of bins required to achieve required number of non-empty bins.
-
get_min_indices()
- Get indices of all minimum distances