
Package index
-
scurve - S-curve dataset with noise dimensions
-
scurve_model_obj - Object for S-curve dataset
-
scurve_plts - List of plots
-
scurve_umap - UMAP embedding for `scurve` with n_neighbors = 15 and min_dist = 0.1
-
scurve_umap_predict - Predicted UMAP embedding for `scurve` data
-
scurve_umap2 - UMAP embedding for `scurve` with n_neighbors = 10 and min_dist = 0.4
-
scurve_umap3 - UMAP embedding for `scurve` with n_neighbors = 62 and min_dist = 0.1
-
scurve_umap4 - UMAP embedding for `scurve` with n_neighbors = 30 and min_dist = 0.5
-
scurve_umap_rmse - Summary with different number of bins for `scurve_umap`
-
scurve_umap_rmse2 - Summary with different number of bins for `scurve_umap2`
-
scurve_umap_rmse3 - Summary with different number of bins for `scurve_umap3`
-
scurve_umap_rmse4 - Summary with different number of bins for `scurve_umap4`
-
gen_scaled_data() - Scaling the NLDR data
-
calc_bins_y() - Calculate the effective number of bins along x-axis and y-axis
-
gen_centroids() - Generate centroid coordinate
-
gen_hex_coord() - Generate hexagonal polygon coordinates
-
assign_data() - Assign data to hexagons
-
compute_std_counts() - Compute standardise counts in hexagons
-
hex_binning() - Hexagonal binning
-
merge_hexbin_centroids() - Extract hexagonal bin centroids coordinates and the corresponding standardise counts.
-
merge_hexbin_mean() - Extract hexagonal bin mean coordinates and the corresponding standardize counts.
-
tri_bin_centroids() - Triangulate bin centroids
-
gen_edges() - Generate edge information
-
update_trimesh_index() - Update from and to values in trimesh data
-
compute_mean_density_hex() - Compute mean density of hexagonal bins
-
find_low_dens_hex() - Find low-density Hexagons
-
avg_highd_data() - Create a tibble with averaged high-dimensional data
-
fit_highd_model() - Construct the 2-D model and lift into high-dimensions
-
glance() - S3 generic for glance
-
glance(<highd_vis_model>) - Generate evaluation metrics for a hex_model object
-
predict_emb() - Predict 2-D embeddings
-
augment() - S3 generic for augment
-
augment(<highd_vis_model>) - Augment Data with Predictions and Error Metrics for NLDR Models
-
gen_diffbin1_errors() - Generate erros and MSE for different bin widths
-
plot_hbe_layouts() - Arrange HBE plot and 2-D layouts
-
GeomHexgrid - GeomHexgrid: A Custom ggplot2 Geom for Hexagonal Grid
-
stat_hexgrid() - stat_hexgrid Custom Stat for hexagonal grid plot
-
geom_hexgrid() - Create a hexgrid plot
-
GeomTrimesh - GeomTrimesh: A Custom ggplot2 Geom for Triangular Meshes
-
stat_trimesh() - stat_trimesh Custom Stat for trimesh plot
-
geom_trimesh() - Create a trimesh plot
-
comb_data_model() - Create a tibble with averaged high-dimensional data and high-dimensional data
-
show_langevitour() - Visualise the model overlaid on high-dimensional data
-
gen_axes() - Generate Axes for Projection
-
get_projection() - Compute Projection for High-Dimensional Data
-
plot_proj() - Plot Projected Data with Axes and Circles
-
comb_all_data_model() - Create a tibble with averaged high-dimensional data and high-dimensional data, non-linear dimension reduction data
-
show_link_plots() - Visualise the model overlaid on high-dimensional data along with 2-D wireframe model.
-
comb_all_data_model_error() - Create a tibble with averaged high-dimensional data and high-dimensional data, non-linear dimension reduction data, model error data
-
show_error_link_plots() - Visualise the model overlaid on high-dimensional data along with 2-D wireframe model and error.
-
group_hex_pts() - Grouped points in each hexagon
-
find_non_empty_bins() - Find the number of bins required to achieve required number of non-empty bins.
-
gen_design() - Generate a design to layout 2-D representations
-
quad() - Solve Quadratic Equation for Positive Real Roots
-
calc_2d_dist() - Calculate 2-D Euclidean distances between vertices