
Create a dataframe with averaged high-dimensional data and high-dimensional data, non-linear dimension reduction data, model error data
Source:R/error_data_link_plots.R
comb_all_data_model_error.Rd
This function combine the average values of high-dimensional data within each hexagonal bin and high-dimensional data, non-linear dimension reduction data, model error data.
Arguments
- highd_data
A tibble that contains the high-dimensional data.
- nldr_data
A tibble that contains the non-linear dimension reduction data.
- model_highd
A tibble that contains the high-dimensional coordinates of bin centroids.
- model_2d
The dataset with hexagonal bin centroids.
- error_df
A tibble that high-dimesional model error.
Value
A tibble with the average values of the high-dimensional data within each hexagonal bin and high-dimensional data, non-linear dimension reduction data, model error.
Examples
df_bin_centroids <- s_curve_obj$s_curve_umap_model_obj$df_bin_centroids
df_bin <- s_curve_obj$s_curve_umap_model_obj$df_bin
model_error <- augment(model_2d = df_bin_centroids, model_highd = df_bin,
highd_data = s_curve_noise_training)
comb_all_data_model_error(highd_data = s_curve_noise_training, nldr_data = s_curve_obj$s_curve_umap_scaled_obj$scaled_nldr,
model_highd = df_bin, model_2d = df_bin_centroids, error_df = model_error)
#> # A tibble: 3,875 × 12
#> x1 x2 x3 x4 x5 x6 x7 type emb1 emb2
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 0.999 0.0659 1.03 -0.00334 0.00122 0.0155 -0.00137 model NA NA
#> 2 0.943 0.0996 1.31 0.00668 -0.00213 0.0333 -0.00127 model NA NA
#> 3 0.701 0.0554 1.70 0.00128 -0.000620 -0.0148 -0.00265 model NA NA
#> 4 0.967 0.354 1.23 -0.00118 0.00123 -0.00145 -0.000612 model NA NA
#> 5 0.815 0.311 1.57 -0.000537 -0.000332 -0.00496 0.00180 model NA NA
#> 6 0.519 0.263 1.85 0.000251 0.000248 -0.0158 0.0000603 model NA NA
#> 7 0.111 0.274 1.98 -0.000734 -0.00238 0.00918 -0.000181 model NA NA
#> 8 -0.307 0.215 1.94 -0.00156 -0.000130 -0.0321 0.0000293 model NA NA
#> 9 -0.644 0.217 1.76 0.00175 -0.00177 0.0107 -0.000382 model NA NA
#> 10 -0.857 0.164 1.50 0.00213 0.00136 -0.00868 0.000856 model NA NA
#> # ℹ 3,865 more rows
#> # ℹ 2 more variables: sqrt_row_wise_total_error <dbl>, density <dbl>