This function generates a LangeviTour visualization based on different conditions and input parameters.
Usage
show_langevitour(
df,
df_b,
df_b_with_center_data,
benchmark_value,
distance_df,
distance_col,
use_default_benchmark_val = FALSE,
col_start
)
Arguments
- df
A tibble that contains the high-dimensional data.
- df_b
A tibble that contains the high-dimensional coordinates of bin centroids.
- df_b_with_center_data
The dataset with hexagonal bin centroids.
- benchmark_value
The benchmark value used to remove long edges (optional).
- distance_df
The tibble with distance.
- distance_col
The name of the distance column.
- use_default_benchmark_val
Logical, indicating whether to use default benchmark value to remove long edges (default is FALSE).
- col_start
The text that begin the column name of the high-dimensional data.
Examples
umap_data_with_hb_id <- s_curve_obj$s_curve_umap_hb_obj$data_hb_id
df_all <- dplyr::bind_cols(s_curve_noise_training |> dplyr::select(-ID),
umap_data_with_hb_id)
df_bin_centroids <- s_curve_obj$s_curve_umap_model_distance_df$df_bin_centroids
#> Warning: Unknown or uninitialised column: `df_bin_centroids`.
df_bin <- s_curve_obj$s_curve_umap_model_distance_df$df_bin
#> Warning: Unknown or uninitialised column: `df_bin`.
distance_df <- s_curve_obj$distance_df
show_langevitour(df = df_all, df_b = df_bin, df_b_with_center_data = df_bin_centroids,
benchmark_value = 1.16, distance = distance_df, distance_col = "distance",
use_default_benchmark_val = FALSE, col_start = "x")
#> Error in UseMethod("filter"): no applicable method for 'filter' applied to an object of class "NULL"