This function fits a high-dimensional model using hexagonal bins and provides options to customize the modeling process, including the choice of bin centroids or bin means, removal of low-density hexagons, and averaging of high-dimensional data.
Value
A list containing the data frame with high-dimensional coordinates
for 2D bin centroids (df_bin
) and the data frame containing
information about hexagonal bin centroids (df_bin_centroids
) in 2D.
Examples
scurve_umap_scaled_obj <- s_curve_obj$s_curve_umap_scaled_obj
lim1 <- scurve_umap_scaled_obj$lim1
lim2 <- scurve_umap_scaled_obj$lim2
r2 <- diff(lim2)/diff(lim1)
fit_highd_model(highd_data = s_curve_noise_training,
nldr_data = s_curve_noise_umap_scaled, bin1 = 4, r2 = r2)
#> ✔ Model generated successfully! 🎉
#> $df_bin
#> # A tibble: 15 × 8
#> hb_id x1 x2 x3 x4 x5 x6 x7
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 0.856 0.201 1.43 -0.000535 0.000684 -0.000925 0.000230
#> 2 3 -0.440 0.192 1.88 0.000338 -0.000838 -0.00858 -0.000574
#> 3 5 0.945 1.10 1.28 0.000149 -0.000608 0.00579 -0.000326
#> 4 6 0.157 0.974 1.89 -0.000520 0.000437 -0.00375 0.0000215
#> 5 7 -0.904 0.826 1.13 0.000804 -0.000838 0.00109 0.000116
#> 6 8 -0.727 0.318 0.337 -0.00258 0.000865 -0.00693 0.000145
#> 7 10 -0.163 0.973 -0.142 -0.000960 -0.000414 -0.00203 -0.000240
#> 8 11 -0.494 1.82 1.15 0.000316 0.00126 -0.0000240 0.000738
#> 9 12 -0.101 1.15 0.0409 -0.000504 0.000973 0.00120 0.000415
#> 10 13 -0.848 1.36 -1.44 -0.000112 -0.000803 -0.00210 -0.0000712
#> 11 14 0.186 1.02 -1.89 0.0000167 0.000649 -0.000965 -0.000124
#> 12 15 0.911 0.961 -1.05 -0.000322 0.000368 -0.00437 0.0000264
#> 13 16 0.713 0.324 -0.341 0.00182 -0.000960 0.00526 -0.000172
#> 14 18 -0.212 1.82 -1.95 -0.000153 0.000124 -0.00374 -0.000188
#> 15 19 0.761 0.761 -1.65 0.000556 0.000606 0.00905 -0.000400
#>
#> $df_bin_centroids
#> # A tibble: 15 × 6
#> hexID c_x c_y bin_counts std_counts drop_empty
#> <int> <dbl> <dbl> <int> <dbl> <lgl>
#> 1 2 0.210 -0.0885 98 0.179 FALSE
#> 2 3 0.520 -0.0885 36 0.0659 FALSE
#> 3 5 0.0549 0.180 132 0.242 FALSE
#> 4 6 0.365 0.180 463 0.848 FALSE
#> 5 7 0.675 0.180 425 0.778 FALSE
#> 6 8 0.985 0.180 77 0.141 FALSE
#> 7 10 0.210 0.448 236 0.432 FALSE
#> 8 11 0.520 0.448 181 0.332 FALSE
#> 9 12 0.830 0.448 545 0.998 FALSE
#> 10 13 0.0549 0.717 284 0.520 FALSE
#> 11 14 0.365 0.717 519 0.951 FALSE
#> 12 15 0.675 0.717 546 1 FALSE
#> 13 16 0.985 0.717 130 0.238 FALSE
#> 14 18 0.210 0.985 62 0.114 FALSE
#> 15 19 0.520 0.985 16 0.0293 FALSE
#>