Skip to contents

This function calculates the mean density of hexagonal bins based on their neighboring bins.

Usage

compute_mean_density_hex(df_bin_centroids, bin1)

Arguments

df_bin_centroids

A tibble that contains information about hexagonal bin centroids, including the hexagon ID and the standard normalized counts (std_counts).

bin1

The number of bins along the x-axis for the hexagonal grid.

Value

A tibble contains hexagonal IDs and the mean density of each hexagonal bin based on its neighboring bins.

Examples

r2 <- diff(range(s_curve_noise_umap$UMAP2))/diff(range(s_curve_noise_umap$UMAP1))
num_bins_x <- 4
hb_obj <- hex_binning(data = s_curve_noise_umap_scaled, bin1 = num_bins_x,
r2 = r2)
all_centroids_df <- hb_obj$centroids
counts_df <- hb_obj$std_cts
df_bin_centroids <- extract_hexbin_centroids(centroids_df = all_centroids_df,
counts_df = counts_df) |>
dplyr::filter(drop_empty == FALSE)
compute_mean_density_hex(df_bin_centroids, bin1 = num_bins_x)
#> # A tibble: 11 × 2
#>    hb_id mean_density
#>    <int>        <dbl>
#>  1     5        0.286
#>  2     6        0.714
#>  3     9        0.690
#>  4    10        0.443
#>  5    14        0.393
#>  6    15        0.619
#>  7    19        0.357
#>  8    23        0.690
#>  9    27        0.429
#> 10    28        0.464
#> 11    31        0.643