This function generates an evaluation data frame based on the provided data and predictions.
Arguments
- df_bin_centroids
Centroid coordinates of hexagonal bins in 2D space.
- df_bin
Centroid coordinates of hexagonal bins in high dimensions.
- training_data
Training data used to fit the model.
- newdata
Data to be augmented with predictions and error metrics. If NULL, the training data is used (default is NULL).
- type_NLDR
The type of non-linear dimensionality reduction (NLDR) used.
- col_start
The text that begin the column name of the high-dimensional data.
Examples
r2 <- diff(range(s_curve_noise_umap$UMAP2))/diff(range(s_curve_noise_umap$UMAP1))
model <- fit_highd_model(training_data = s_curve_noise_training,
emb_df = s_curve_noise_umap_scaled, bin1 = 4, r2 = r2, col_start_highd = "x")
df_bin_centroids <- model$df_bin_centroids
df_bin <- model$df_bin
glance(df_bin_centroids = df_bin_centroids, df_bin = df_bin,
training_data = s_curve_noise_training, newdata = NULL, type_NLDR = "UMAP",
col_start = "x")
#> # A tibble: 1 × 2
#> Error MSE
#> <dbl> <dbl>
#> 1 58.9 0.295