Skip to contents

This function augments a dataset with predictions and error metrics obtained from a nonlinear dimension reduction (NLDR) model.

Usage

gen_diffbin1_errors(highd_data, nldr_data, benchmark_highdens = 1)

Arguments

highd_data

A tibble that contains the high-dimensional data with a unique identifier.

nldr_data

A tibble that contains the embedding with a unique identifier.

benchmark_highdens

(default: 1) A numeric value using to filter high-density hexagons.

Value

A tibble containing the augmented data with predictions, error metrics, and absolute error metrics.

Examples

scurve_sample <- scurve |> head(100)
scurve_umap_sample <- scurve_umap |> head(100)
gen_diffbin1_errors(highd_data = scurve_sample, nldr_data = scurve_umap_sample)
#>  Model generated successfully!!!
#>  Model generated successfully!!!
#>  Model generated successfully!!!
#>  Model generated successfully!!!
#>  Model generated successfully!!!
#>      Error      RMSE b1 b2   b  m   a1   a2      d_bar
#> 1 56.41496 0.3864918  5  7  35 18 0.26 0.23 0.06084011
#> 2 48.44832 0.3431850  6  8  48 21 0.22 0.19 0.05897765
#> 3 45.81080 0.3174797  7  9  63 25 0.20 0.17 0.05378166
#> 4 41.79401 0.2989940  8 11  88 28 0.16 0.14 0.06200255
#> 5 42.09304 0.3126706  9 12 108 29 0.14 0.12 0.06591885