This function augments a dataset with predictions and error metrics obtained from a nonlinear dimension reduction (NLDR) model.
Value
A tibble containing the augmented data with predictions, error metrics, and absolute error metrics.
Examples
scurve_sample <- scurve |> head(100)
scurve_umap_sample <- scurve_umap |> head(100)
gen_diffbin1_errors(highd_data = scurve_sample, nldr_data = scurve_umap_sample)
#> ✔ Model generated successfully!!!
#> ✔ Model generated successfully!!!
#> ✔ Model generated successfully!!!
#> ✔ Model generated successfully!!!
#> ✔ Model generated successfully!!!
#> Error RMSE b1 b2 b m a1 a2 d_bar
#> 1 56.41496 0.3864918 5 7 35 18 0.26 0.23 0.06084011
#> 2 48.44832 0.3431850 6 8 48 21 0.22 0.19 0.05897765
#> 3 45.81080 0.3174797 7 9 63 25 0.20 0.17 0.05378166
#> 4 41.79401 0.2989940 8 11 88 28 0.16 0.14 0.06200255
#> 5 42.09304 0.3126706 9 12 108 29 0.14 0.12 0.06591885