Skip to contents

Given a test dataset, the centroid coordinates of hexagonal bins in 2D and high-dimensional space, predict the 2D embeddings for each data point in the test dataset.

Usage

predict_emb(test_data, df_bin_centroids, df_bin, type_NLDR)

Arguments

test_data

The test dataset containing high-dimensional coordinates and an unique identifier.

df_bin_centroids

Centroid coordinates of hexagonal bins in 2D space.

df_bin

Centroid coordinates of hexagonal bins in high dimensions.

type_NLDR

The type of non-linear dimensionality reduction (NLDR) used.

Value

A tibble contains predicted 2D embeddings, ID in the test data, and predicted hexagonal IDs.

Examples

r2 <- diff(range(s_curve_noise_umap$UMAP2))/diff(range(s_curve_noise_umap$UMAP1))
model <- fit_highd_model(training_data = s_curve_noise_training,
emb_df = s_curve_noise_umap_scaled, bin1 = 4, r2 = r2, col_start_highd = "x")
df_bin_centroids <- model$df_bin_centroids
df_bin <- model$df_bin
predict_emb(test_data = s_curve_noise_training, df_bin_centroids = df_bin_centroids,
df_bin = df_bin, type_NLDR = "UMAP")
#> # A tibble: 75 × 4
#>    pred_UMAP_1 pred_UMAP_2    ID pred_hb_id
#>          <dbl>       <dbl> <int>      <int>
#>  1     -0.1          0.461     1          9
#>  2      0.666        1.12      2         19
#>  3      0.666        1.12      3         19
#>  4      0.0915       0.130     4          5
#>  5      0.283        0.461     6         10
#>  6      0.857        2.12      7         31
#>  7      0.666        1.12      8         19
#>  8      0.474        0.793     9         14
#>  9      0.666        1.12     11         19
#> 10      1.05         1.79     12         28
#> # ℹ 65 more rows