Given a test dataset, the centroid coordinates of hexagonal bins in 2D and high-dimensional space, predict the 2D embeddings for each data point in the test dataset.
Examples
df_bin_centroids <- s_curve_obj$s_curve_umap_model_obj$df_bin_centroids
df_bin <- s_curve_obj$s_curve_umap_model_obj$df_bin
predict_emb(highd_data = s_curve_noise_training, model_2d = df_bin_centroids,
model_highd = df_bin)
#> # A tibble: 3,750 × 4
#> pred_emb_1 pred_emb_2 ID pred_hb_id
#> <dbl> <dbl> <int> <int>
#> 1 0.272 0.842 1 200
#> 2 0.809 0.484 2 132
#> 3 0.809 0.341 3 102
#> 4 0.272 0.556 5 140
#> 5 0.561 0.770 6 189
#> 6 0.189 0.269 7 79
#> 7 0.685 0.556 9 145
#> 8 0.726 0.341 10 101
#> 9 0.809 0.484 11 132
#> 10 0.231 0.0546 12 35
#> # ℹ 3,740 more rows